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Boundary approximation methods with partial solutions are presented for solving a 
complicated problem on an unbounded domain, with both a crack singularity and a comer 
singularity. Also an analysis of partial solutions near the singular points is provided. These 
methods are easy to apply, have good stability properties, and lead to highly accurate 
solutions. Hence, boundary approximation methods with partial solutions are recommended 
for the treatment of elliptic problems on unbounded domains provided that piecewise solution 
expansions, in particular, asymptotic solutions near the singularities and infinity, can be 
found. 0 1990 Academic Press, Inc. 

1. INTRODUCTION 

Boundary approximation methods with partial solutions are presented in Li, 
Mathon, and Sermer [8] for solving elliptic equations on bounded domains. 
In this paper, we will apply these methods to solve a complicated problem in an 
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unbounded domain, with both a crack and a corner singularity. The singularity of 
the solution at the corner is of the order 

z4=0(1)+O(p21np) as p-+0 (1.1) 

and will be called a mild singularity. 
In our application, the solution domain is divided into several subdomains. 

Different expansions of solutions are used in different subdomains. Assuming that 
the expansions used satisfy exactly the elliptic equations within subdomains, an 
approximate solution is then found by obtaining the expansion coefficients that 
satisfy, as best as possible in a least-squares sense, the exterior boundary conditions 
and the interior continuity conditions on the common boundary of subdomains. 
Since the partial solutions are chosen to satisfy the equation in the subdomains and 
since the solution procedure is performed along the interior and exterior boun- 
daries, we call these methods boundary approximation methods with partial solutions 
(BAM) to distinguish it from the boundary element methods (BEM). Evidently, 
BAM are derived from the Trefftz method [ 123, where unified expansions of solutions 
have to be employed in the entire solution domain. In this paper we use “partial 
solutions” for the solutions satisfying exactly the homogeneous equations. 

Since local expansions or asymptotic forms of solutions satisfy the differential 
equation, BAM can be employed to solve problems with both singularities and 
unbounded domains. Also, highly accurate approximations can be obtained by 
using relatively few expansion terms, thus requiring only a modest computational 
effort regarding both CPU time and storage. In addition, the approximate solutions 
obtained are piecewise analytical so that BAM are beneficial to the analysis of 
engineering problems. These all are advantages over finite element and finite 
difference methods. 

However, in applying BAM, we have to choose appropriate piecewise expansions 
of the solutions. This is required even by other numerical methods, i.e., the 
generalized finite element analysis of Zielinski and Zienkiewicz [ 121. Fortunately, 
the textbooks of partial differential equations (i.e., Tikhonov and Samarskii [lo]) 
provide useful partial solutions for the most important equations arising in applica- 
tions. But sometimes, an analysis is needed to find suitable solution expansions. 
Such an analysis is essential for problems with singularities because the asymptotic 
behavior of the solutions near the singular points or at infinity is often unknown 
or unclear. 

The stability of numerical solutions obtained by using BAM is also important. It 
is shown in [8] that the stability can be improved if several subdomains are used. 
For BAM, both the accuracy and stability of numerical solutions obtained rely 
substantially on how we choose: 

(1) Geometric shapes of subdomains and 

(2) Piecewise partial solutions on the subdomains. 

If we are able to deal with these two aspects properly, we can obtain very 
accurate solutions and very small condition numbers. Consequently, an effort is 

%1:89’2-II 



416 LIANDMATHON 

made to find appropriate kinds of singular solutions in this paper. An investigation 
of geometric shapes of subdomains will be pursued in Li and Mathon [7]. 

In fact, approaches similar to BAM may have been used in some engineering 
problems. A precise description of the methods, convergence proofs, and error 
estimates for numerical solutions are given in Li [S] and Li, Mathon, and Sermer 
[S]. It is worthwhile to point out that BAM and its theoretical analysis presented 
in [8] can be easily extended to unbounded domain problems for the equation 
(Babuska and Aziz [ 1 ] and Fufner [3]), 

-Au+cu=O, o<a<c<p, (1.2) 

where A = a2/ax2 + a2/ay2, and u and b are constants. Therefore, we will take the 
DebyeeHuckel equation, 

-Au+u=O, (1.3) 

which results from the theory of weak electrolytes, as a sample equation. Equation 
(1.3) is, in fact, also a typical elliptic equation. To solve Eq. (1.3) we shall describe 
a BAM and carry out numerical experiments. 

In the next two sections, we will find local partial solutions on all subdomains, 
which will then form a basis for the approximate solutions used by the BAM. 
Numerical experiments and discussions are given in the last section. 

2. PARTIAL SOLUTIONS ON SUBDOMAINS 

Let R* be the upper semi-plane, excluding the cut (x = 0) n (0 < y < 1). Now we 
consider the elliptic equation in Q*, 

-Au+u=O, (x, y)eQ*, 

and the Dirichlet conditions (see Fig. 1): 

u=l for x=OandO< y<l; and u=l for y=O. 

In two dimensions (see Tikhonov and Samarskii [lo]), the infinity condition of 
solutions for this problem is the property of boundedness: u/,, oc, < C, where C is 
a bounded constant. 

Because of the symmetry, it is sufficient to consider the unbounded domain, .Q 
(x > 0 and y > 0), and a solution u such that 

-Au+u=O, (4 Y)EQ (2.1) 

u=l for x=OandO<y< 1, (2.2) 

au/ax=0 for x=Oandy>l, (2.3) 

u=l for y=Oandx>O. (2.4) 
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FIG. I. The unbounded domain Q* along with local polar coordinates 

We notice that there exist three kinds of singularities on Sz’ (x30 and ~20): 

1. A crack singularity at the point (0, 1). 
2. An “infinity” singularity, governing the solution behavior at infinity. 
3. A mild singularity at the origin (0, 0), near which the solutions have an 

asymptotic formula: 

u=0(1)+O(p21np) as p + 0. 

Below, we try to derive solution expansions near these three singularities, one by 
one. 

2.1. Partial Solutions near the Crack Singularity 

Let r, be a semi-circle with center at the crack singularity (0, I), and a radius 
R, ( < 1 ), and (r, 0) be the polar coordinates shown in Fig. 1. Also denote Q, as the 
semi-disc (r, 0) (r < R, and 0 < 19 < 7~). Then, on 0, including the crack singularity, 
partial solutions of Eqs. (2.1)-(2.3) also satisfy 

for O<r<R, andO<O<rr, (2.5) 

4o=n= 1, au 
as il=n = 0. (2.6) 

Letting u = u +cosh(r sin 0), the problem (2.5) and (2.6) leads to a homogeneous 
boundary problem: 

(r, O)EQ,, (2.7) 
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With the help of separation of variables, we can obtain 

u = R(r) Q(e), 

where the function R(r) and Q(0) will satisfy 

with a constant ,u. It then follows that 

a%(8) 
Y#- + P2@(@ = 0, 

a@ 
@(O)=z osrr = 0, 

and 

tt(rF)-(I+$)R(r)=O. 

So, the solutions of (2.11) and (2.12) are 

sin(l+ f)0, l=O, 1, . . . 

(2.9) 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

and the solution of (2.13) is the Bessel functions Z,(r) for a purely imaginary 
argument defined by (see Tikhonov and Samarskii [lo]) 

z,(r)= ,f 

1 r 2n+lr 

n=O r(n+1)r(n+P+1) 2 0 
(2.15) 

Therefore, a partial solution on Q, satisfying Eqs. (2.5) and (2.6) is given by 

u = cosh(r sin 6) + t aXI,+ ,,,*(r) sin(l+ $)6’ for (r<R, andO<fl<rr), (2.16) 
/=O 

where a,* are expansion coefficients. 

2.2. Partial Solutions near Infinity 

Let (p, 4) be other polar coordinates with the origin (0,O) shown in Fig. 1, and 
0, be an unbounded domain (p, 19) (p > R, > 1 and 0 < 4 < n/2). In order to find 
the solution in 52, satisfying Eqs. (2.1), (2.3), and (2.4), we will solve the equation 

2 

AT p!?! +lc3u=u in Q,, 
( > pap ap P* 842 

(2.17) 
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with the boundary conditions 

u/~=o= 1, 

au 

3 #=71/2 

= 0. 

Letting u = w + e-psi”), we have 

2 

la pi? +‘Iw=w, 

( > pap ap ~2 ad* 
(P, c75)EQ2> 

aw 

U’I $4 = 0 = 3 m = n,2 = 0. 

(2.18) 

(2.19) 

(2.20) 

Similarly, by separation of variables, we obtain partial solutions near infinity 

z4=ePpsin)+ f c,*K,,+,(p)sin(2n+ l)d 
n=O 

for prR,andO<(<i, (2.21) 

where c,* are real expansion coefficients, and K,(p) are the Hankel functions for a 
purely imaginary argument defined by (see [ 101) 

2.3. Partial Solutions near the Mild Singularity 

In order to find partial solutions near the mild singularity (0, 0), we consider the 
equations: 

for p<R,<l andO<C<i, (2.23) 

u=l for IJ = 0, 7~12. (2.24) 

Let U= w+ 1; then we have 

+i!2=(w+1) 
~2~2 

for p<R,andO<4<:, (2.25) 

w=o for C$ = 0, 7~12. (2.26) 

Obviously, general solutions of Eqs. (2.25) and (2.26) can be expressed in the form 

w=W+ 5 d,*Z,,,(p)sin2@, 
,1 = I 

(2.27) 

581/89!2-12 
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where d,* are expansion coefficients, W is a particular solution of (2.25) and (2.26) 
as 

W = f w,?(p) sin 2j$, (2.28) 
j= I 

with the functions w,*(p) that will, in detail, be provided below. 
By using the Green theorem, we have, from Eq. (2.25), 

(2.29) 

Let 

v = I&) sin 2j$, (2.30) 

lb 21+ 1 sin 2(21+ l)# = 1, (2.31) 
I=0 

where $(p) is an arbitrarily smooth function, and the coeffkients are 

b 
4 

2’+’ = (21+ 1)7c’ 

Then we obtain from Eqs. (2.28)-(2.32) 

r,p{ -~~(p~)+(l+~)w:+bi}pll(p)dp=O, 

Noting that I,!+) is an arbitrary function, it follows that 

(2.32) 

j=21+ 1, z=o, 1, . . . . 

(2.33) 

-f;[p~]+[l+(2(2~1))2]w~~+,+b2~+,=0. (2.34) 

This is the equation that governs the functions w$+ ,(p). Besides, the functions 

d,(P) = 0, f=O, 1, . . . (2.35) 

are derived from b,,= 0. Therefore, the solution of Eqs. (2.23) and (2.24) can be 
written as 

u = 1 + f w;,+,(p) sin 2(21+ l)# + f d:Z,,(p) sin 214. 
/=O I= I 

(2.36) 
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Now let us give the explicit expansions for w T,+t(p). According to the analysis 
of Lehman [4], Wigley [ll], Fox and Snaker [2] and Strang and Fix [9], the 
function w,*,+ r(p) can be expanded into 

w,*=w2*l+I(P)= C (aj,i+8j,;lnP)Pi+2, (2.37) 

where j= 21+ 1, and ujti and fij,i are coefficients. By substituting Eq. (2.37) into 
Eq. (2.34), we have the identities: 

+[l+Y] O” i~o(il/,~+~,,iln~)~i’2+b~=0, j=21+1,l=O, l,.... (2.38) 

Since the sum of coefficients in front of pi or pi In p must be zero, we find that 
the coefficients 

5,21+ 1 - j,2l+ L - -/? -0 for l=O, 1, . . . (2.39) 

and that the coefficients r~,,~, and /I,,,, are defined by the following recursive 
formulas: 

1. When (i+2)>2j, 

/3,,i = ' ci+ 212 _ (312 PA--23 

1 

(2.40a) 

(2.40b) 

2. When (i+2)<2j, 

b,,i = OT (2.41a) 

for ia2. (2.41b) 

3. When i+2=2j, 

Uj,’ = 0, 

BLo=~P aji-2 
D,,,i =-----1-_ 2(i+2) 

for ia2. 

(2.42a) 

(2.42b) 
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By now, we have already provided all the coefhcients uj,i and /?j,i. Consequently, 
we can conclude from Eqs. (2.35) and (2.36) that 

u=l+1~21np as p -0. (2.43) 
71 

Evidently, when p + 0, the derivatives au/ap are bounded but the derivatives 
8’u/Bp2 + co. This implies that the singularity at the (0,O) is milder than the crack 
singularity at (0, 1) where the derivatives au/& + co as r + 0 (see Eq. (2.16)). 
Hence we call the singularity at the origin a mild singularity. 

3. A BOUNDARY APPROXIMATION METHOD 

Since there exist three kinds of singularities on L2’ (x 2 0 and y > 0), we have to 
divide Sz into three subdomains: 

a=sz,un,usz,, (3.1) 

such that each of them includes only one singularity. We have found a good 
division shown in Fig. 2, where the subdomain 52, are described as follows: 

1. a,: (r<l)n(y>$), (3.2) 

2. Q,:(p<l)n(y<$), (3.3) 

3. 52, : the rest of the solution domain 52, i.e., 

l2, = Q\(Q, u 52,). (3.4) 

In fact, we have experimented BAM with different radii r and p in (3.2) and (3.3) 
and different forms of r,3, such as a circular arc or different line segments. The 
condition numbers obtained by using the partition in Fig. 1 are larger than the 
values of Cond in Table I based on Fig. 2. We note that in the BAM, small condition 
numbers are important for obtaining extremely accurate numerical solutions. 

For the partial solutions in Section 2, we choose the following piecewise 
expansions as admissible functions: 

u=oj”=cosh(rsin8)+ i (r) 
I=0 

ir,:‘+1’2 
If 1,2(l) 

sin(l+ l/2)0 for (r, O)Ef2,, 

u=yj12)=e(-psinO+ f K2,+ I(P) 
I=0 

;zK 
2/+1(l) 

sin(21+ l)f$ for (P, 4)eQ2, 

(3.5) 

(3.6) 

u=uy= 1+ 2 w* I*,(P) 
2,,l(p)sin2(2~+l)m+~~~~,~s~n2Y for (P, ~)EQ~, 

/=O 21 

(3.7) 
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FIG. 2. A division of Q for the BAM. 

where the functions w,*,+ r(p) are defined by (2.37), d,, Fl, and d, are the unknown 
coefficients to be found, and the integer N, s 1. In (3.5)-(3.7), the functions 
Z ,+ & 1) etc. serve as scale factors. 

We note that the admissible functions (3.5), (3.6), or (3.7) satisfy Eq. (2.1) in Q2,, 
Q,, or 52, and all exterior boundary conditions (2.2k(2.4). The coefficients iii, Z,, 
and d, are obtained by satisfying in the least-squares sense the continuity conditions 
on the interior boundary Tii only, i.e., 

v(i) = u(i) 
au(i) &(J) 

and -=-, av av (4 y)Erii, i<j, 

where TV= aGin aQj, and v is the normal of TV. 

TABLE I 

Error Norms and Condition Numbers of the Numerical Solutions 

2 0 1 299 8.475 x lo-* 3.3 
5 2 3 299 3.873 x 1O-3 13.3 
8 4 5 299 4.682 x 10 -4 34.8 

11 6 7 299 7.053 x 1om5 118.9 
14 8 9 299 1.193 x 1o-5 458.0 
17 10 11 299 2.166 x 1O-6 1832 
20 12 13 999 4.163 x lo-’ 7504 
23 14 15 999 8.378 x 10-s 31426 
25 16 17 999 1.750 x lo-* 134795 

L N K N, Iu--uIEl Cond 

(3.8) 
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Define a space H such that 

H= (vE&(!Z)I -Av+v=O in Q,, and veH1(Qi), where i= 1, 2, 3}, (3.9) 

and a norm Iv1 B over H such that 

Ivl;=[v,v]= ; I,~(v(i)-v(j))‘+~2(~-~)‘}~~, (3.10) 
i, j = 1 

i<J 

where w is a weight constant. Then the coefficients ii,, C,, and d, are chosen to mini- 
mize the norm IU - vie, i.e., 

IsIB= )u-fiJ.=Min Iu--vIB, (3.11) 
DEH 

where u” is a approximate solution (see [8]). 
We note that the true solution u will have zero errors in the norm 1 .I B and will 

disappear in the norm definition IsI B. Also the values of 1~1 B can be computed from 
the procedure of BAM. A useful relation between norms has, under some condi- 
tions, been established in Li [S] and Li and Mathon [7] 

lbll H = Ocrn IEi B)? (3.12) 

where E = u - 6. 

llvl,H = ( i ,lvll :,Q,)“‘~ (3.13) 
i=l 

and 

l6f= Max(L, 2K, 2N+ l), w = l/n. (3.14) 

In (3.13), lbll I,R, are the Sobolev norms, where the subdomain s2, is unbounded. 
Based on (3.12), error norm llsll H over the entire solution domain can be obtained 
from the error norm [aIs only on the interior boundary TO. 

Equation (3.11) yields a system of linear algebraic equations: 

Bx=b, (3.15) 

where x is the unknown coefficient vector with components ii,, t,, and 2,; b is a 
known vector; and the normal matrix B is positive definite and symmetric. 

All computations reported in this paper have been carried out on an IBM 4381 
using double precision. The Bessel and Hankel functions for a purely imaginary 
argument were evaluated by using the subroutines for Bessel and Hankel functions 
contributed by Argonne National Laboratory. The standard integration rules such 
as Simpson’ rule (or the trapezoidal rule) can be used for computing the integrals 
in (3.10) if L, K, N are not too large (as in our case). 
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In practice, the total number N, of integration nodes (i.e., the control points) 
should be larger than the total number A4 of the unknown coefficients used in 
(3.5)-(3.7). In our calculation M= 3-60, we have chosen N, = 50-200 so that 
N, $ M. Therefore, the algebraic problem (3.15) never becomes singular. 

4. NUMERICAL RESULTS 

Based on the error analysis in [S, 81, the weight constant w in the approximate 
solution (3.11) of the model problem (2.1)-(2.4), can be chosen as 

1 1 
W=z=Max(L., 2K, 2N+ 1)’ (4.1) 

or as in another way (see Remark 1 below). Table I gives error norms lulB and 
condition numbers Cond of the numerical solutions. From Table I we can deduce 
the following asymptotic relations: 

I&Is= lu-filB=0(0.755M), Cond=0(1.21”), (4.2) 

where M denotes the total number of the unknown coefficients ii,, c”,, and 2,: 

M=L+N+K+2, (4.3) 

and Cond is the following condition number associated with the least squares 
problem 

Here AMax and ~Min(B) are the maximal and minimal eigenvalues of the normal 
matrix B, respectively. Equations (4.2) exhibit exponential rates of convergence for 
both the error norms and condition numbers. However, the values of Cond grow 
slowly as M increases. 

When L = 25, N = 16, K = 17, N, = 999, and w = &, we obtained an approximate 
solution with 

IEIB= @lo-‘), Cond = 0( 105) (4.5) 

by using only 60 unknown coefficients, where the notation O(lOPs) means a quan- 
tity of order lo-* (alO-*, 1 < c( < 10). The approximate coefficients are listed in 
Table II. Since the error norm in (4.5) is very small, such a solution can be regarded 
as an “exact solution” of Eqs. (2.1 k(2.4) for both theoretical and practical 
purposes. For example, in terms of an “exact solution,” error norms can be 
computed for other approximate procedures, such as the combined methods [S, 61. 
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TABLE II 

The Coefficients of the Approximate Solution for L = 25, N = 16, K= 17, N, = 999, and w = & 

A. Coeflicients a, 

e a.! 

I 0 -.1134321797585d 

1 -.2035664113452x10° 

2 +.1a02645475372*10° 

3 +.49851666O6623x1O-1 

4 +.1448626726660x10-1 

' 5 +.7317028845157x10-' 

6 +.4O21O67893764x1O-2 

7 +.2397388765168x10 -2 

8 +.1542368986040*10-2 

9 +.1050063183825~10-2 

i 

10 +.7462738867242x10-' 

11 +.54775588356O1x1O-3 

12 +.41129923913a2xlom3 
L 

e aJ! 

13 +.313O281737391x1O-3 

14 +.239163336O67Ox1O-3 

15 +.1815954074aa5xlo-3 

16 +.1355865655678x1O-3 

17 +.9845758791387xl0-4 

la +.6874549O27162x1O-4 

19 +.456OO95585229x1O-4 

20 +.2c35a75926942x1o-4 

21 +.16278219O41O7x1O-4 

22 +.a4537O677147Ox1O-5 
23 +.3861170957769x10 -5 

24 +.1682617318115x1O-5 

25 +.4392926896278x1O-6 

B. Coefficients c, and d, 

i =e 
0 +.2769005233385*10° 

1 -.9O66552957337x1O-1 

2 +.45619969892OOx1O-1 

3 -.2828278554347x1O-1 

4 +.19641557O9458x1O-1 

5 -.1462958139O45x1O-1 

6 +.1140500948182~10-1 

7 -.9131S71726473x10-2 

8 +.7346837942624x1O-2 

9 -.5765893519271*10-2 

10 +.42497693O7289x1O-2 

11 -.2816615820485x10-2 

12 +.1601231751265*10-2 

13 -.739a900405725*lo-3 

14 +.25a7534935o69x1o-3 

15 -.6080346016446x10-4 

16 +.72289O924O972x1O-5 
i 

-7 - 
1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 
.- 

d-e 
-.4015781884664x10° 

+.5890728222103x10 -1 

-.3532773398943xlo-' 

+.2354001734508x10 -1 

-.1702868100792~10-1 

+.1301850746566x10-1 

-.1O339238O929Ox1O-1 

t.8397076489702xlO -2 

-.683O46O487149x1O-2 

t.5400913572576xlO -2 

-.39949a4244a26xlo-2 

t.2647170401599xlO -2 

-.1500088526740~10-2 

t.6896932422165x10-3 

-.23987O88628O1x1O-3 

t.5609893058375xlO -4 

-.66518371949O4x1O-5 
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FIG. 3. (a) The graph of the approximate solution and its derivatives from the BAM with L= 11, 
N=6, K=7, and w=& along f,,, r,2r and f,,. (b) The graph of the errors in the approximate 
solution from the BAM with L = 11, N = 6, K= 7, and w = & along Tzl, r,2, and r,3. (c) The graph 
of the errors in the derivatives from the BAM with L = 11, N = 6, K = 7, and w = & along r,,, r12, and 

J-13. 
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FIG. 3-Continued. 

Since E = u - fi, the errors on the interfaces satisfy 

AE=E+ -&- =cf -fi-, on r,,i-cj, (4.6a) 

on r,,icj. (4.6b) 

To demonstrate the behavior of the approximate solution and its normal derivative 
along the interfaces we have chosen a relatively small expansion with L = 11, N = 6, 
K= 7, and the weight constant w = & from (4.1). We have used the trapezoidal rule 
with a total of No = 70 ( > A4 = 26) integration nodes, yielding an error J&Is = 
7.053 x 10e5 and Cond = 118.9 (see Table I). It is interesting to note that the first 
few coefficients in the expansion: 

a, = - 1.1343283038332, co = 0.2768544333536, d, = -0.4015700184588, 

are in good agreement with the corresponding coefficients of much longer expan- 
sion in Table II. 

In Figs. 3 we display the approximate solution, its normal derivative and their 
errors along the interfaces. Here the horizontal axis denotes the arc length along 
f,, , ri2, and ri3. The values of As and (a/&) AE are very small, compared with 
the values of the approximate solution and its normal derivative (see Fig. 3a). The 
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maximal absolute value of (a/&) AE (about 8 x 10e4) is larger than that of AE 
(about 8 x 10w5) by a factor of 10. The oscillatory behavior of AE and (J/&J) AE 
along the interfaces is caused by the least-squares procedure (3.11). 

To close this paper, let us make a few remarks. 

1. It is worthwhile to justify our choice (4.1) of the weight constant u’. 
Evidently, we have 

d n-l 
-&x”=nx ) 

(4.7b) 

Then the error magnitude of the derivatives will be, in general, larger than that of 
the solutions (3.5)-(3.7), by a factor of L + 3, 2K, or 2N + 1. Therefore, we choose 
(4.1) as the weight constant to balance the errors in the solutions and their 
derivatives in the least squares procedure (3.11) and to yield the minimal error 
norms defined as (3.10) or (3.13) (see [S, 7, 83). 

With the choice (4.1) of the weight constant, the term 

1 

-I( 

&p au(r) 2 ds 
--- 

~2 r,, av av > 
(4.8) 

in (3.10) will influence the matrix B in (3.15) because the derivatives, &P/av, 
increase by a factor of 1+ 4, 2k or 2n + 1 (see (4.7)). 

Define the norm of only the errors or derivative errors along the interface r, = 
Ui-c jru: 

3 l/2 

\u+ - u-lro= c i s (Uf -u-)2ds (4.9a) 
i,j= 1 rl, 

f<J 

or 

where u+ and u ~ are the values of u on two sides of f,. Then we can see from 
(3.10) that: 

Iu+ -u-lrod 14e, (4.10a) 

(4.10b) 
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For the numerical solution with L = 25, N= 16, K== 17, w = $, we obtain from 
Table I, 

(4.1 la) 

(4.11b) 

The derivative errors on Z, are of the order O( 10e7). Also the error norms /~EI/~ 
in the solution domain have the same order 0(10-7) from (3.12). They are very 
small if we recall that the derivative errors in the finite element method (FEM) 
using piecewise linear or quadratic interpolation functions for sufficiently smooth 
solutions [9], are of the order O(h) or O(Zz2), respectively. Here h is the maximal 
length of triangular elements. 

Besides the choice (4.1) of w, the following choice for w is also interesting in prac- 
tical application. Suppose that the two error norms I&(,,, and I(~Y/&)(de)l~, as 
(4.9) are separately contemplated. Therefore, the choice of w should be connected 
with the expected relations of the two error norms, I (a/&) A&l r0 and I A&l rO. In fact, 
we can expect: 

- IM,-,, if w=l, 
r0 

I I 
Y$ (A&) > I&ro, if O<w$l, 

ro 

I I 
; (A&) < Wlro, if ~$1, 

ro 

(4.12a) 

(4.12b) 

(4.12~) 

compared with the choice (4.1), which causes generally slower convergence of 
I(a/av)(A~)l~,, than that of IAel,,,. Evidently, this arbitrary choice of w is beneficial 
to stress calculation in elasticity mechanics, where the accuracy in the derivatives 
of displacements should be emphasized more than that in displacements themselves. 
In this case, we may choose w = O( 1 ), and even w 9 1. 

2. In Section 2, we have described techniques for finding partial solutions of 
elliptic equations with constant coefficients. Partial solutions of the more general 
equation 

Au - g(r, 0)~ = 0 (4.13) 

are presented in Fox and Snaker [2] for various functions g(r, 0). Since Eq. (2.1) 
is a special case of (4.13), the functions from [2] can be also used to solve (2.1). 
This might be of interest in some engineering applications where approximate 
solutions of modest accuracy are required. Our choice of Z2,(p) sin 214, etc. in the 
expansions has a wider applicability, makes the error analysis easier and leads to 
better and more stable numerical solutions. 
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3. The conditioning of the numerical problems depends on the geometric 
form of subdomains into which the whole region is partitioned. For example, if the 
subdomain Qi lies between two circular sectors 0; and Qi, 0, 2 Qi 2 Qi of radii R, 
and Y;, respectively, 

ai: {(r,8)10~r<R,,06860}, 

szi: ((r,e)(Odr<ri,o~e~o}, 
(4.14) 

and the partial solutions Z,(r) sin ~0 are used, then the condition number of the 
associated coefficient matrix behaves like (see [S, 71) 

Cond=O(M,ax Fzi{:>*), ri<Ri, (4.15) 

where ni is the number of expansion terms in sZi. Applying (4.14) to 0, and 52, in 
Fig. 2, a horizontal section makes a good interface Z13, since the maximum ratio 
is closer to one. This conclusion has been also confirmed in our numerical 
experiments. 

REFERENCES 

1. I. BABUSKA AND A. K. AZIZ, “Survey Lectures on the Mathematical Foundations of the Finite 
Element Methods,” in The Mathematical Foundations of the Finite Element Method with Application 
to Partial Differential Equations, edited by A. K. Aziz (Academic Press, New York/London, 1972), 
p. 3. 

2. L. Fox AND R. SNAKER, J, Inst. Math. Appl. 5, 340 (1969). 
3. A. FUFNER, Weighted Sobolev Spaces (Wiley, New York, 1985). 
4. R. S. LEHMAN, J. Math. Meth. 8, 727 (1959). 
5. Z. C. LI, Ph.D. thesis, University of Toronto, May 1986; winner of the 1987 Doctoral Dissertation 

Award of CAMS/SCMA (unpublished); Numerical methods of elliptic problems with singularities: 
Boundary methods and nonconforming combinations, monograph. 

6. Z. C. LI, Comput. Method Appl. Mech. Eng. 24, 191 (1989). 
7. Z. C. LI AND R. MATHON, Math. Comput. 54, 41 (1990). 
8. Z. C. LI, R. MATHON, AND P. SERMER, SIAM J. Numer. Anal. 24, 487 (1987). 
9. G. STRANG AND G. J. FIX, An Analysis of the Finite Element Method (Prentice-Hall, Englewood 

Cliffs, NJ, 1973). 
10. A. N. TIKHONOV AND A. A. SAMARSKII, Equations of Mathematical Physics (MacMillan Company, 

New York, 1973). 
11. N. M. WIGLEY, J. Math. Mech. 13, 549 (1964). 
12. A. P. ZIELINSKI AND 0. C. ZIENKIEWICZ, Int. J. Numer. Methods Eng. 21, 509 (1985). 


